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Abstract 

An alternative to the Black-Scholes-Vasicek deflator is proposed. It is based on 
a simple multivariate exponential normal variance-mean mixture Lévy process. 
Closed-form analytical integral formulas for pricing the European geometric 
basket option with a deflated normal variance-mean price process are obtained. 
Applications to the variance-gamma, the normal inverse Gaussian and the 
normal tempered stable processes are included. An extended Black-Scholes 
formula that takes into account the correlation structure of the market is also 
derived. 

1. Introduction 

The present contribution follows up the author’s investigations 
around the normal variance-mean (NVM) mixture model introduced in 
Barndorff-Nielsen et al. [6]. It is motivated by the search for non-
Gaussian multivariate option pricing models as an alternative to the 
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multivariate Black-Scholes model. Our emphasis is on results that can be 
formulated for a possibly large class of NVM mixture models in the spirit 
of Korsholm [32]; Bingham and Kiesel [7]; and Tjetjep and Seneta [50] 
among others. 

The concept of state-price deflator or stochastic discount factor, which 
has been introduced by Duffie [17], pp. 23 and 97, is a convenient 
ingredient of general financial pricing rules. It contains information 
about the valuation of payments in different states at different points in 
time. The state-price deflator is a natural extension of the notion of state 
prices that were introduced earlier and studied by Arrow [2, 3, 4, 5]; 
Debreu [14]; Negishi [44]; and Ross [48], a milestone in the history of 
asset pricing (see Dimson and Mussavian [16]). Though general 
frameworks for deriving state-price deflators exist (e.g., Milterssen and 
Persson [42]; Jeanblanc et al. [31]; Munk [43]), there are not many 
papers, which propose explicit expressions for them and their 
corresponding distribution functions. A short account of the content 
follows. 

Section 2 recalls the multivariate NVM mixture model in its simplest 
Lévy process form. It generalizes the construction of the multivariate 
exponential variance-gamma process considered in Cont and Tankov [12]; 
Luciano and Schoutens [35]; and first studied in Hürlimann [24, 25]. 
Theoretical and statistical justifications for its use are briefly mentioned. 
In Section 3, we derive the multivariate NVM deflator as alternative to 
the multivariate Black-Scholes-Vasicek (BSV) deflator introduced in 
Hürlimann [21] (see also Hürlimann [23, 28]). Analytical integral 
formulas for pricing the European geometric basket call option within the 
multivariate NVM market with NVM deflator are derived and discussed 
in Section 4. The final Section 5 introduces a multivariate subordinated 
asset price model, whose univariate version coincides with the model by 
Hurst et al. [20]. As a special case, it includes an extended Black-Scholes 
formula that takes into account the correlation structure of the market. 
The present novel approach is general and simple. From a statistical 
perspective, parameter estimation can be done with a multivariate 
moment method (see Hürlimann [27]). Moreover, the derivation of the 
extended Black-Scholes formula has an elementary probabilistic flavour. 
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2. A Selection of Multivariate Normal Variance-Mean  
Mixture Processes 

The univariate normal variance-mean (NVM) mixture process is 
defined as a drifted Brownian motion time changed by an independent 
mixing process. Viewed from the initial time 0, it is defined by 

,,0,0, ∞<θ<∞−>τ>⋅τ+⋅θ= tWGX tGtt   (2.1) 

where tW  is a standard Wiener process and tG  is an independent 

subordinator, that is an increasing, positive Lévy process. Since tX  is a 

Lévy process, the dynamics of the process is determined by its distribution 
at unit time. The random variable 1XX =  follows a distribution, whose 

cumulant generating function (cgf) ( ) ( )[ ]uXEuCX expln=  is assumed to 

exist over some open interval. By considering in parallel different 
subordinators, a unified approach to several important NVM mixture 
models is possible. Our focus is restricted to three of them (for further 
possible choices, consult Hürlimann [26], Section 4). 

(a) Variance-gamma (VG) process 

The subordinator ( )11 ,~ −−Γ νν tGt  is a gamma process with             

unit mean rate and variance rate .ν  The random variable 

( )ν,,~ 2
1 τθ= VGXX  follows a three parameter VG distribution with 

cgf: 

( ) { ( )} .,0,,2
11ln 221 ∞<θ<∞−>ττ+θ⋅−⋅−= − ννν uuuCX  

 (2.2) 

This formula is obtained from the cgf ( ) ( )uuCG ⋅−⋅−= − νν 1ln1  of the 

gamma random variable 1GG =  by conditioning using that ( ,~ GNGX θ  

)G2τ  is normally distributed. The increments of the process follow a VG 

distribution, namely, ( ) .0,,,~ 2 tstttVGXX sst <≤τθ−+ ν  
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(b) Normal inverse Gaussian (NIG) process 

The cgf of the inverse Gaussian subordinator is ( ) ⋅= − tuC tG
1ν  

{ } .0,211 >⋅−− νν u  The random variable ( )ν,,~ 2τθNIGX  follows 

a three parameter NIG distribution with cgf: 

( ) { ( )} .,0,,2
1211 221 ∞<θ<∞−>ττ+θ⋅−−⋅= − ννν uuuCX  

(2.3) 

The increments of the process are ( )tttNIG ν,, 2τθ  distributed. 

(c) Normal tempered stable (NTS) process 

The subordinator follows a classical tempered stable process with      

cgf ( ) { ( ) } ( ).2,0,0,211 2 ∈α>−−⋅α= ααα− ννν utuC tG  The random 

variable ( )ατθ ,,,~ 2 νNTSX  follows a four parameter NTS distribution 

with cgf: 

( ) { ( ( )) } ( ),2,0,0,,2
1211 222 ∈α>ττ+θ−−⋅α= ααα− ννν uutuCX  

.∞<θ<∞−  (2.4) 

The increments of the process are ( )ατθ
−α− ,,,
12 tttNTS ν  distributed. 

The special case 1=α  is the NIG process. 

Similarly to those multivariate versions mentioned in Hürlimann 
[24] for the VG process, different multivariate models for each NVM 
mixture process can be defined. For simplicity, we consider here only 
multivariate Lévy processes with NVM components of the type 

( ) ( ) ,,,1, nkWGX k
Gktk

k
t t

…=⋅τ+⋅θ=   (2.5) 

where the ( )k
tW ’s are correlated standard Wiener processes such that 

[ ( ) ( ) ] .dtdWdWE ij
j

t
i

t ρ=  Despite all its shortcomings, the use of the model 
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(2.5) is justified theoretically by looking at the variance of its NVM 

margins ( ) ( )kk XX 1=  at unit time, namely, 

[ ( ) ] [ ] .VarVar 22
kk

k GX θ⋅+τ=   (2.6) 

Each variance decomposes into an idiosyncratic component ,2
kτ  that is 

attributed to the Brownian motion, and an exogeneous component 

[ ] ,Var 2
kG θ⋅  that is due to the time change of the Brownian motion. The 

parameters kθ  govern the exposures of the margins to the global market 

uncertainty measured by the common variance [ ].Var G  Similarly, one 

notes that the skewness and kurtosis are also affected by the single 
marginal settings and the common subordinated parameter(s) (see 
Hürlimann [27], Theorem 2.1). On the other hand, the statistical moment 
method developed in Hürlimann [27] and its successful application to 
real-world data justifies its use in practical work. For these reasons, it is 
legitimate to focus first on the model (2.5). One knows that the cgf of the 
NVM mixture model is given by 

( ) ( ) ( ) ( ),,,,,2
1

1 jiijn
TT

GX uuuCuC tt ττρ=∑θθ=θ∑+θ= …  

( ).,,1 nuuu …=   (2.7) 

The joint cgf of the considered multivariate NVM processes can be 
expressed in closed-form. 

Proposition 2.1. The joint cgf of the multivariate NVM mixture 

process ( ( ) ( ) )n
ttt XXX ,,1 …=  with parameters ( ) ( ),,,,1 jiijn ττρ=∑θθ=θ …  

and subordinator ,tG  is determined as follows: 

Multivariate VG process 

The multivariate VG random vector ( )tttVGXt ν,,~ ∑θ  has joint 

cgf  

( ) { ( )} ( ).,,,2
11ln 1

1
n

TT
X uuuuuutuC t …=∑+θ⋅−⋅−= − νν  (2.8) 
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Multivariate NIG process 

The multivariate NIG random vector ( )tttNIGXt ν,,~ ∑θ  has joint 

cgf 

( ) { ( )} ( ).,,,2
1211 1

1
n

TT
X uuuuuutuC t …=∑+θ⋅−−⋅= − νν (2.9) 

Multivariate NTS process 

The multivariate NTS random vector ( )α∑θ
−α− ,,,~
1

tttNTSXt ν  

has joint cgf 

( ) { ( ( )) } ( ).,,,2
1211 1

2
n

TT
X uuuuuutuC t …=∑+θ⋅−−⋅α= ααα− νν  

(2.10) 

Proof. This follows from (2.7) and the explicit forms for the cgf of the 
subordinators. 

3. Unified State-Price Deflator Representation  
for the Exponential NVM Mixture Process 

In the following, we simplify and generalize the procedure in 
Hürlimann [24], Section 4. Consider the following class of asset pricing 
models. Given the current prices of 1≥n  risky assets at initial time 0 
their future prices at time 0>t  are described by exponential NVM 
mixture processes 

( ) ( ) (( ) ( ) ) ,,,1,exp0 nkXtSS k
tkk

kk
t …=+ω−µ=  (3.1) 

where kµ  represents the mean logarithmic rate of return of the k-th   

risky asset per time unit, and the random vector ( ( ) ( ) )n
ttt XXX ,,1 …=  

follows a multivariate NVM mixture process. Using the defining 

relationship [ ( ) ] ( ) ( )tSSE k
kk

t µ= exp0  at unit time, one sees that 

( ) ( ) ,,,1,1 nkC kXk …=∞<=ω  where one assumes that the cgf of 
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( ) ( )kk XX 1=  exists over some open interval, which contains one. Suppose 

that the multivariate NVM deflator of dimension n has the same form as 
the price processes in (3.1). For some parameter α  and vector 

( )nββ=β ,,1 …  (both to be determined), one sets for it (an Esscher 

transformed measure) 

( ) .0,exp >β−α−= tXtD t
T

t   (3.2) 

A simple cgf calculation shows that the state-price deflator martingale 
conditions 

[ ] [ ( ) ] ( ) ,0,, 0 >== − tSSDEeDE kk
tt

rt
t  (3.3) 

are equivalent with the system of 1+n  equations in the 12 +n  unknowns 

kk ωβα ,,  (use that tX  is a Lévy process, hence ( ) ( )):uCtuC XXt ⋅=  

( ) ( ( ) ) ,0,0 =β+α−ω−µ=β−+α− k
XkkX CCr  

( ) ( ( ) ( ) ) ( ) .,,1,,,,,1 nkjj
k
j

k
j

k
n

kk …… =β−δ=βββ=β  (3.4) 

Inserting the first equation into the second ones yields the necessary 
relationships 

( ( ) ) ( ) .,,1,0 nkCCr X
k

Xkk …==β−−β+ω−−µ  (3.5) 

Since the system (3.4) has n degrees of freedom, the unknown kω  can be 

chosen arbitrarily, say 

( ) ( ) ,,,1,1 nkCr kXkk …==−µ=ω   (3.6) 

which is interpreted as the (time-independent) NVM market price of the 
k-th risky asset. With the made restriction on the cgf, this value is always 
finite. Inserted into (3.5) shows that the parameter vector β  is 

determined by the equations 

( ( ) ) ( ) .,,1, nkCC X
k

X …=β−=β   (3.7) 
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We are ready to show the following unified NVM deflator representation: 

Theorem 3.1 (Multivariate NVM deflator). Given is a risk-free asset 
with constant return r and 1≥n  risky assets with real-world prices (3.1), 

where one assumes that the cgf of ( ) ( )kk XX 1=  exists over some open 

interval, which contains one. Then, the multivariate NVM deflator of the 
exponential NVM mixture process is determined by 

( ( ) ) ( ),,exp
1

β−+=αβ−α−= ∑
=

X
k

tk

n

k
t CrXtD  

( ) .,,1,,2
1 22 nk

k

j
kj

kj
kkkkkk …=

τ
τ

ρ=γτγ++θ=τβ ∑
≠

 (3.8) 

Moreover, in the univariate case ,1=n  one has .01 =γ  

Proof. The first equation in (3.4) yields .α  Since tt GX ,  are Lévy 

processes, one has ( ) ( ) ( ),, uCtCuCtuC GGXX tt ⋅=⋅=  hence (2.7) is 

equivalent with the equation ( ) ( ).2
1 uuuCuC TT

GX ∑+θ=  It follows 

that the conditions (3.7) are equivalent with the equations: 

( ) ( ) ( ) .,,1,02
1

2
1 nkTTkkkT T

…==β∑β−βθ+β∑β+βθ  

A straightforward calculation shows that the latter is equivalent with the 
stated conditions for ,,,1, nkk …=β  where in case ,1=n  one has 

01 =γ  (empty sum).   

4. Pricing Geometric Basket Options for the  
Exponential NVM Mixture Process 

In the literature, one distinguishes between two types of basket 
options. The arithmetic basket option is defined on the weighted 
arithmetic average of asset prices such that 
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( ),
1

k
tk

n

k
t ScS ∑

=

=  (4.1) 

where the weights ( )kc  can be negative, and in this situation, it includes 

spread options. The geometric basket option is defined on the weighted 
geometric average of asset prices 

[ ( ) ] .1,0,
11

=>= ∑∏
==

k

n

k
k

ck
t

n

k
t ccSS k  (4.2) 

Since distribution functions of weighted sums of correlated asset 
prices can usually not be written in explicit closed form, the pricing of 
arithmetic basket options is rather challenging. Different and mostly 
approximate methods to price them have been developed so far by many 
authors including Turnbull and Wakeman [51]; Milevsky and Posner [41]; 
Krekel et al. [34]; Carmona and Durrleman [10]; Borovka et al. [8]; Wu et 
al. [53]; Venkatramanan and Alexander [52]; Alexander and 
Venkatramanan [1]; and Brigo et al. [9]. The pricing of the geometric 
basket option is more straightforward. 

To illustrate the usefulness in option pricing of the multivariate NVM 
deflator, we restrict the attention to the pricing of geometric basket 
options. We obtain a general analytical NVM pricing formula, which can 
be viewed as a generalization of the Black-Scholes formula. Moreover, 
explicit analytical formulas are displayed for the exponential VG and 
NIG price processes. In particular, a simpler alternative to the NIG 
closed-form formula by Wu et al. [53] is derived. 

Consider a European geometric basket call option with maturity date 
T and exercise price K in the multivariate NVM market with 1≥n  risky 
assets that follow the price process (3.1) and is subject to the NVM 
deflator (3.8). Its price at initial time 0 is given by 

[ ( ) ].+−= KSDEC TT   (4.3) 
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A straightforward calculation, which takes into account the normalizing 
condition ,,,1, nkrkk …=−µ=ω  shows that 

{ ( ) ( ) ( )},exp
1

0
k

Tkk

n

k
XTT XcTCSSD β−+β−−⋅= ∑

=

 

{ ( ) ( )}.exp
1

k
Tk

n

k
X

rT
T XTCKeKD β−β−−⋅= ∑

=

−  (4.4) 

In the following, we suppose that the density function ( )xf TG  of the 

mixing random variable TG  exists. Through conditioning one can rewrite 

(4.3) as ( ) ( ) ( )dwwfwCeC T
X G

TC ∫
∞

β−− ⋅=
0

 with 

( ) [( { ( ) ( ( ) )}k
GkTkkk

n

k
T

WGcSEwC τ+θβ−⋅= ∑
=1

0 exp  

{ ( ( ) )}) ].exp
1

wGWGKe T
k

GkTkk

n

k

rT
T

=τ+θβ−⋅− +
=

− ∑  (4.5) 

Each of the two conditional correlated normally distributed sums in    
(4.5) is normally distributed, and their joint distribution is bivariate      
normal. Therefore, the distribution of the conditional random couple 

( ( ) ( ) ( ) )wGXXc T
k

Tk
n

k

k
Tkk

n

k
=β−β− ∑∑

== 11
,  is determined by the conditional 

means 

[ ( ) ( ) ] ( ) ,,
1

11
1

kkk

n

k
T

k
Tkk

n

k
cmwmwGXcE θβ−===β− ∑∑

==

 

[ ( ) ] ,,
1

22
1

kk

n

k
T

k
Tk

n

k
mwmwGXE θβ−===β− ∑∑

==

 (4.6) 

the conditional variances 
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[ ( ) ( ) ] ( ) ( ) ,,Var
1,

2
1

2
1

1
jjjiiiij

n

ji
T

k
Tkk

n

k
ccswswGXc τβ−τβ−ρ===β− ∑∑

==

 

[ ( ) ] ,,Var
1,

2
2

2
2

1
jjiiij

n

ji
T

k
Tk

n

k
swswGX τβτβρ===β− ∑∑

==

 (4.7) 

and the conditional covariance 

[ ( ) ( ) ( ) ] ,,Cov 21
11

wsswGXXc T
k

Tk

n

k

k
Tkk

n

k
ρ==β−β− ∑∑

==

 

( ) .
1,

21 jjiiiij

n

ji
css τβτ−βρ=ρ ∑

=

 (4.8) 

Now, let ( )xΦ  denotes the standard normal distribution, ( ) ( )xx Φ−=Φ 1  

its survival function, and ( ) ( )xx Φ′=ϕ  its density. The bivariate standard 

normal density is defined and denoted by 

( )
( ) ( )

( ) .2
12

1exp
12
1;, 22

222








+ρ−
ρ−

−
ρ−π

=ρϕ yxyxyx  

From (4.5) and the definitions (4.6)-(4.8), one obtains 

( ) ( ) ( ) .;,20 2211 dxdyyxKeeSwC ywswmrTxwswm ρϕ−= +
++−+

∞

∞−

∞

∞−
∫∫  (4.9) 

The expression in the bracket of (4.9) is non-negative provided ( )yxx ≥  

with 

( ) ( ) ( ) .ln
1
2

1
12

1

0 ys
sws

mm
ws

rTSKyx +
−

+
−

=  

Since ( ) ( ) (( ) ) 22
2 11;, ρ−ρ−ρ−ϕϕ=ρϕ yxyyx  a separation of the 

double integral yields ( ) ( ) ( )dyywyJwC ϕ= ∫
∞

∞−

,  with the inner integral 
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( ) ( )
( )

{ }ywswmrTxwswm

yx

KeeSwyJ 22110
211, ++−+

∞

−⋅ρ−= ∫  

(( ) ) .1 2 dxyx ρ−ρ−ϕ×  (4.10) 

A straightforward application of Lemma A1 in the Appendix yields 

( )
( )

( ( ) )wsyxyeSwyJ
wsywswm

1
2

2

1
0 1

1
,

2
1

2
2
1

11 ρ−+
ρ−

−ρΦ=
ρ−+ρ+

 

( ( ) ).
1 2

22

ρ−

−ρΦ− ++− yxyKe ywswmrT  

To simplify notation, rewrite the arguments within the normal distribution 
functions as 

( ) ( ) with,
1

,1
1 21

2
2

cybyxycyawsyxy +=
ρ−

−ρ+=ρ−+
ρ−

−ρ  

( ) ( ( ) ) ,
1

1ln
2

1

2
1

2
210

ρ−

ρ−+−+−
=

ws

wsmmSKrTa  

( ) ( ) .
1

,
1

ln
2

1

21
2

1

210

ρ−

−ρ
=

ρ−

−+−
=

s

ssc
ws

wmmSKrTb  

Furthermore, one has 

( ) ( ) ( ) ( )., 21
2
22

1
2

2
1

2
2
1

1 wsyeyewsyeye
wsywswsyws −ϕ=ϕρ−ϕ=ϕ

ρρ  

Now, using twice the Lemma A2 of the Appendix, one obtains 

( )
( )

( )
( )

( ).
11 2

2
2

1
0

2
22

1
2

2
12

1
1

c

wcsbKe
c

wscaeSwC
wsmrTwsm

+

+
Φ−

+

ρ+
Φ=

++−+
 

Based on the above expressions for the coefficients ,and,, cba  one 

obtains further 
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( )
( )

( ( ) )wmm
w

SKrTeSwC
wsm

Ω
Ω+−

+
Ω

−
Φ=

+ 2
1210

0
ln2

12
1

1  

( )
( ( ) ),ln 2

2210
2
22

1
2 wmm

w
SKrTKe

wsmrT
Ω

Ω−−
+

Ω

−
Φ−

++−
 

.,2,1, 2
2

2
121

22 Ω+Ω=Ω=ρ−=Ω kssskk  (4.11) 

Summarizing, we have shown the following main result: 

Theorem 4.1 (Geometric basket call option formula in the 
multivariate NVM market). Given is the multivariate exponential NVM 
mixture process (3.1) subject to the NVM deflator (3.8). Then, in the above 
notations, one has 

[ ( ) ] ( ) { ( ) ( )},,,,, 22110 dbaKedbaSeKSDEC TT
X G

rT
G

TC
TT Ψ⋅−Ψ⋅⋅=−= −β−−

+  

(4.12) 

( ) ( ) ( ) ,,,
0

dwwfwbedba TT Gw
daw

G +Φ=Ψ ∫
∞

 

( ) ,1,2
1 21

212
Ω

Ω−+−
=+=

−
k

k
kkkk

mmbsma  

 ( ) .ln,2,1 0
Ω

−
==

SKrTdk   (4.13) 

A particular instance, for which the formula (4.12) simplifies 
considerably, is the special case ,0=d  that is the exercise price is set 

equal to .0
rTeSK =  In this situation, (4.12) rewrites as 

[ ( ) ] ( ) { ( )wbeSeeSSDEC waTCrT
TT X 1

0
00 1 Φ⋅=−= ∫

∞
β−−

+
−  

( )} ( ) .22 dwwfwbe TG
wa Φ−  (4.14) 
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At this point, an important connection with the standard no-arbitrage 
framework of mathematical finance must be mentioned (e.g., Wüthrich et 
al. [54], Subsection 2.5; and Wüthrich and Merz [55], Chapter 2). By the 
fundamental theorem of asset pricing, the assumption of no-arbitrage 
(weak form of efficient market hypothesis) is equivalent with the 
existence of an equivalent martingale measure for deflated price 
processes. In complete markets, the equivalent martingale measure is 
unique, perfect replication of contingent claims holds, and 
straightforward pricing applies. In incomplete markets, an economic 
model is required to decide upon which equivalent martingale measure is 

appropriate. Now, let P denotes the real-world measure and ∗P  denotes 
an equivalent martingale measure. Then, one can either work under P, 
where the price processes are deflated with a state-price deflator. 

Alternatively, one can work under ∗P  by discounting the price processes 
with the bank account numeraire. Working with financial instruments 

only, one often works under .∗P  But, if additionally insurance liabilities 
are considered, one works under P (see Wüthrich et al. [54], Remark 
2.13). A recent non-trivial example is pricing of the “guaranteed 
maximum inflation death benefit (GMIDB) option” (Hürlimann [22]; 
Equation (5.4) in Hürlimann [23]). Theorem 4.1 demonstrates the 
practicability of the state-price deflator approach for exponential NVM 
price processes as applied to the European geometric basket call option. 
In cases, where the density function of the mixing random variable is 
known, the formulas (4.12)-(4.14) yield a closed-form analytical pricing 
system for the geometric basket option. The conditions under which the 
multivariate NVM market is complete and arbitrage-free, that is there 
exists a unique equivalent martingale measure and prices are uniquely 

defined (whether under ∗P  or under P with state-price deflator), remain 
to be found. This is a non-trivial problem that has been tackled so far 
solely for the multivariate Black-Scholes model (see Dhaene et al. [15]). 
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Example 4.1. Multivariate exponential VG asset pricing model. 

The subordinator ( ) 1,,~ −=γγγΓ νTGT  is gamma distributed with 

density 

( ) ( ) ( ).1 γΓ⋅γ⋅γ= γ−−γ xT
G exxf T  (4.15) 

Making the change of variable ( ) ,1 waz −=  the function-Ψ  in (4.13) is 

of the form stated in Kotz et al. [33], p. 296 (European risk-neutral call 
option price for an exponential VG price process), which is the original 
closed form formula by Madan et al. [37], Theorem 2 and Appendix (see 
also Madan [36], Subsection 6.3.1, Equation (14)). The advantage of the 
alternative pricing formula (4.12) is the simple parameter structure 
(4.13). Also, the special case (4.14) simplifies considerably. A similar 
analytical pricing system for the Margrabe option has been considered 
previously in Hürlimann [24, 25]. In particular, for an Erlang 

subordinator with integer parameter 1−=γ ν  formulas of the type (4.14) 

reduce to finite sum expressions (see Hürlimann [24], Appendix 2). As a 
new result, we derive a closed-form expression for the function-Ψ  as a 

sum of an incomplete beta function and an integrated Macdonald 
function. It is much simpler than the original formula in terms of the 
Macdonald function (modified Bessel function of the second kind) and the 
degenerate hyper-geometric function of two variables. 

In the following, let ( ) ( )1,~ γΓγGa  be a standardized gamma 

random variable with density ( )( ) ( ) ( )γγΓ⋅= −−γ
γ ,2

1,1 Beexxf x
Ga  be a 

beta with distribution function 

( )( )
( )

( ) ,1
,2

1
1 1

0
,

2
1

2
1 dttt

B
xF

x

Be
−γ−

γ −⋅
γ

= ∫  (4.16) 
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and ( )βαγ ,,VG  a variance-gamma with density (e.g., Hürlimann [29], 

Equation (A4.21)) 

( )( ) ( )
( )

( ) ( ( ) ),2
1

2
1exp

2
1

2
1

,, xKxxxfVG β+α⋅




 β−α−⋅








β+αγΓπ
αβ= −γ

−γγ

βαγ  

.0≠x   (4.17) 

Theorem 4.2 (Closed-form VG function-Ψ  representation). The 

normal gamma mixed integral ( ) ( ) ( )( )dxxfxbxaba Ga λ
−

∞

+Φ=γΨ ∫ 1

0
,,  

satisfies the following probabilistic representation: 

( ) { ( ) ( )( )}2
2
1

2
2
1

, 1
sgn12

1,,
2
1

b

b
Fbba Be +

⋅+=γΨ γ  

( )
( ( ) ( ) )

( ) .sgn
sgn2,sgn2,

0
22 dxxfa

babbabVG

a

−+++γ∫⋅+  (4.18) 

Proof. This is shown in the Appendix.  

In particular, the VG formula (4.14) can be rewritten in terms of the 
incomplete beta function. 

Example 4.2. Multivariate exponential NIG asset pricing model. 

The subordinator ( )
νν T

TIGGT
1,~  is inverse Gaussian distributed 

with density 

( ) { ( ) }.2exp2
2

2
3

Tx
TxxTxf TG νν

−−⋅
π

=
−

 (4.19) 

Pricing of the geometric basket option under an equivalent martingale 
measure has been previously considered in Wu et al. [53]. However, their 
fast Fourier transform pricing formula is more complex than the closed-
form expression (4.22) below. 
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In the following, let ( )δα,SNRIG  be a symmetric NVM mixture 

random variable with reciprocal inverse Gaussian mixing density 

( )( ) ( ).1 22
0, xKexfSNRIG +δα⋅⋅α⋅

π
= αδ

δα  (4.20) 

It is obtained from the generalized hyperbolic distribution as 

( ) ( ).,0,,2
1, δα=δα GHSNRIG  The density of the normal inverse 

Gaussian ( ) ( )δβα−=δβα ,,,2
1,, GHNIG  is denoted by 

( )( ) ( )
⋅

+δ

+δα
⋅⋅αδ⋅

π
= β+β−αδ

δβα 22

22
1

,,
221

x

xKexf x
NIG  (4.21) 

Theorem 4.3 (Closed-form NIG function-Ψ  representation). The 

normal gamma mixed integral ( ) ( ) ( )dxxfxbxaba TG+Φ=γΨ −
∞

∫ 1

0
,,  

satisfies the following probabilistic representation: 

( ) ( )
( )

( )bFbba
T

TSNRIG νν
1,

sgn2
1,, ⋅+=γΨ  

( )
( ( ) )

( ).sgn
,sgn,21 aFa T

T babNIG νν −+
⋅+   (4.22) 

An extension of the probabilistic representations (4.18) and (4.22) to 
arbitrary generalized inverse Gaussian mixing densities is found in 
Hürlimann [30]. 

Example 4.3. Multivariate exponential NTS asset pricing model. 

The classical tempered stable subordinator has not a tractable 
density function but a relatively simple characteristic function. In this 
situation, one approximates the integrals (4.13)-(4.14) by use of the fast 
Fourier transform (FFT) of TGf  (e.g., Hürlimann [27], Appendix 1). 
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5. A Simple Multivariate Subordinated Asset Price Model 

The special choice ,,,1,0 nkk …==β  of the multivariate NVM 

deflator (3.8) implies that ( ) ( ) =τγ+−=θ=α=β− 2
2
1,,0 kkkX rC  

.,,1,2
1

1
nkjkj

n

j
k …=τρ⋅τ− ∑

=
 It follows that the NVM deflator 

degenerates to the risk-free discount factor .rt
t eD −=  In this 

multivariate subordinated market, the risky assets follow the price 
process (insert (3.6) into (3.1)) 

( ) ( ) ( ( ) ( ) ) ,,,1,2
1exp 2

0 nkWGrtSS k
Gktkk

kk
t t

…=⋅τ+⋅τ⋅γ+−=  (5.1) 

where the ( )k
tW ’s are correlated standard Wiener processes such that 

[ ( ) ( ) ] ij
j

t
i

t dWdWE ρ=  and tG  is an independent subordinator. The pricing 

of the European geometric basket call option with maturity date T and 
exercise price K simplifies somewhat. 

Theorem 5.1 (Geometric basket call option formula in the 
multivariate subordinated market). Given is the multivariate subordinated 

asset price model (5.1) subject to the risk-free discount factor .rt
t eD −=  

Then one has 

[ ( ) ] ( ) ( ),,,,,0 dsmKedsmSKSDEC
TT G

rT
GTT

+−−
+ Ψ⋅−Ψ⋅=−=  (5.2) 

( )
( )

( ( ) ) ( ) ,,,
2

0

2
2
1

dwwf
ws

wsmdedsm TT G
wsm

G
++

Φ=Ψ
+

∞
− ∫  

( ) ( ) ( ) ,,,
0

dwwf
ws
mwddsm TT GG

+Φ=Ψ ∫
∞

+   (5.3) 
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( ) .ln,,2
1

0
1,

2

11
rTKSdccscm jjiiij

n

ji
jkj

n

j
kk

n

k
+=ττρ=τρτ−= ∑∑∑

===

  

Proof. This result is a special instance of Theorem 4.1 and can be 
similarly derived in a simpler way (one-dimensional integration only).  

The specialization to a geometric basket with a single risky asset is 
instructive. 

Corollary 5.1 (European state-price deflated call option price for a 
single subordinated asset). Given is the multivariate subordinated asset 

price model (5.1) subject to the risk-free state-price deflator .rt
t eD −=  

Then one has 

[ ( ( ) ) ] ( ) ( { } ) ( { } ),,,,, 1111
1

0
1 dKedSKSDEC jjG

rT
jjGTT TT τρτΨ⋅−τρτΨ⋅=−= +−−

+  

(5.4) 
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j
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j
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jjG
τ

τ+τρ⋅τ−

Φ=τρτΨ
∑

∫ ≠
τρ⋅τ−∞

−
∑
≠  

( { } ) (

( )
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2
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1
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wwd

d TT G

jj
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jjG τ

τ−τρ⋅τ−

Φ=τρτΨ
∑

∫ ≠
∞

+  

( ) .ln 0 rTKSd +=  (5.5) 

Proof. Set 0,1 21 ==== nccc …  to see that ( )jj
j

m τρ⋅τ−= ∑
≠

1
1

12
1  

,,2
1 2

1
22

1 τ=τ− s  and the result follows immediately through insertion 

into the formula (5.2).  

Corollary 5.1 is related to some remarkable previous results. Suppose 
,,,2,01 njj …==ρ  that is the single asset is uncorrelated with the 
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other risky assets, then .01
1

=τρ∑
≠

jj
j

 Then, one recovers the option 

formula by Hurst et al. [20] for the univariate subordinated asset price 
model (see also Rachev and Mittnik [47]; and Rachev et al. [46], 
Subsection 7.6 with correction of the misprint in the stock price model, 
however). If TGT =  with probability one (Black-Scholes-Merton model), 

then (5.4) yields a new extended Black-Scholes formula that takes into 
account the correlation structure of the market. Besides the multivariate 
exponential VG, NIG, and NTS processes, the proposed multivariate 
subordinator market contains a rich class of feasible models. If tG  is the 

stable process proposed by Mandelbrot [39, 40] and Fama [18], one has a 
logstable model. If tG  is the CIR process by Cox et al. [13], one obtains a 

multivariate version of the model by Heston [19] (see Rachev et al. [46], 
Subsection 7.6). The CGMY and Meixner specifications by Carr et al. 
[11], resp., Schoutens and Teugels [49]; and Pitman and Yor [45], are also 
subordinated models, as shown by Madan and Yor [38]. Some differences 
with the approach by Hurst et al. [20] can be noted. While these authors 

work under an equivalent martingale measure ∗P  in the univariate case 
1=n  only, we work in the multivariate case under P using a state-price 

deflator. Hurst et al. argue in Section 5 that an equivalent martingale 
measure is not expected to exist unless one assumes that .1 r=µ  In this 

case, their (equivalent martingale measure) market price of risk reads 
(Equation (5.11)) 

( ) .2
1

1
2
111 ττ+θ−=ω∗   (5.6) 

The assumption r=µ1  corresponds to the choice r=ω−µ 11  in the 

deflator approach. By virtue of (3.6), the (state-price deflator) market 
price of risk equals 

( ) ( ) ( ) ( ( )).2
1

2
11 1

1

2
1

2
1111 1 jj

j
GGX CCCr τρ⋅τ−=τ+θ==−µ=ω ∑

≠

 (5.7) 
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Under the made assumptions, both market prices of risk are equal and 

vanish, if and only if one has ,01
1

=τρ∑
≠

jj
j

 and in this situation, the 

formula (5.4) coincides with the Hurst-Platen-Rachev formula. Our 
multivariate subordinated asset price model is a genuine extension 
because it covers cases with non-vanishing market prices of risk for 

which .1 r≠µ  For this, the condition 01
1

≠τρ∑
≠

jj
j

 in financial markets is 

rather the rule than the exception. Therefore, the new approach is of 
primordial importance. Since the equivalent martingale approach and 
the state-price deflator approach are equivalent (comments after 

Theorem 4.1), there is no need to display the measure ∗P  in the 
multivariate case. 
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Appendix: Integral Identities of Normal Type and  
Probabilistic Function-Ψ  Representations 

The crucial identities used in the derivation of Theorem 4.1 are 
stated and proved separately. 
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Lemma A1. For any real numbers ,,, µcb  and ,0>σ  one has the 
identity 

( )( ) .
22

2
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1






 σ+

σ
−µΦ⋅=σµ−ϕ⋅⋅σ

σ+µ
∞

− ∫ bcedxxe
bbbx

c

 (A1.1) 

Proof. Consider first the case .1,0 =σ=µ  From the relation 

( ) ( ),
2

2
1

bxexe
bbx −ϕ=ϕ  one gets ( ) ( ) ⋅=ϕ⋅=ϕ⋅ ∫∫
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Lemma A2. For any real numbers ,,, µba  and ,0>σ  one has the 

identity 

( ) ( )( ) .
1 22
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Proof. Consider the functions ( ) ( ) ( ) ,dxxxzzF ϕ+Φ= ∫
∞
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∞
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 One notes that ( ) ( ) ( ) 2
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  from which it follows that 
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Φ=′+= ∫  On the other hand, one has 
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( ),
1 2z
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Φ=′+= ∫  It follows 
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Proof of Theorem 4.2. A repeated application of the method used in 
Lemma A2 will do. In the special case ,0,0 ≥= ba  set ( ) ( )γΨ= ,,0 zzJ  

( ) ( ) ( ) .0,
0

≥Φ= λ
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A calculation shows that 
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where the last expression follows by noting that the integrand is related 

to a gamma density. With the change of variable ,2uz =  one sees that 
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A further change of variables ( )ttu −= 1  shows that 
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With (4.16), this implies (4.18) for .0,0 ≥= ba  The formula for ,0=a  

0<b  follows by noting that ( ) ( ) ( ),1 xbxbxb Φ−=−Φ=Φ  hence 
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( ) ( ).1 bJbJ −=  In general, if ,0≥a  set ( ) ( ) ( )λ
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The integrand is related to a generalized inverse Gaussian density of the 
form 
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A comparison with (4.17) shows that ( ) ( )( ) ,2,,, czfzI VG =β+α=′ βαγ  

.2b=β−α  The formula (4.18) for 0≥a  follows. If ,0<a  one notes that 

( ) ( ) ( ),1 111 xbxaxbxaxbxa −Φ−=+−Φ=+Φ −−−  

hence ( ) ( ).,,1,, γ−Ψ−=γΨ baba   
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Proof of Theorem 4.3. If ,0,0 ≥= ba  set ( ) ( ) ( )xzzzJ Φ=γΨ= ∫
∞

0
,,0  

( ) .0, ≥zdxxf TG  One has ( ) ( ) .2
1

0
dzzJbJ

b
′+= ∫  A calculation shows that 

( ) ( ) ( ) ( {( ) }) .1
2
1exp1

2
1 12

00

1
dxxTxzTxeTdxxfxzxzJ TG

−
∞∞

++−⋅⋅
π

=ϕ=′ ∫∫ ννν
ν  

The integrand is related to a harmonic law ( ) ( )0,,, βα=βα GIGH  

with density  

( )( )
( )

( )
,,1,1

2
1 2

0
,

1
2
1

νν
TzTexK

xf
xx

H =β+=α
αβ

=
−β+α−

βα  

such that 

( ) ( ).11 2
20

1
zTKeTzJ

ννν
ν +⋅⋅

π
=′  

Comparing with (4.20) shows (4.22) for .0,0 ≥= ba  The formula for 

0,0 <= ba  follows from the relation ( ) ( ).1 bJbJ −=  If ,0≥a  then one 

has ( ) ( ) ( )dzzIbJaI
a

′+= ∫
0

 with ( ) ( ) ( ) .0,1

0
≥+Φ= −

∞

∫ zdxxfxbxzzI TG  

Through calculation, one obtains 

( ) ( ) ( )dxxfxbxzxzI TG+ϕ=′ −−
∞

∫ 11

0

 

( {( ) ( ) }) ,1
2
1exp1

2
1 122

2
0

1
dxxzTxbTx

eT bz −
∞

−
+++−⋅⋅

π
= ∫ ννν

ν  
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whose integrand is related to the density of a generalized inverse 

Gaussian ( )pGIG ,, βα  with parameters .,1,1 22 zTbTp +=β+=α−=
νν

 

It follows that 

( )
( )

.
1

11
2

22
12

1

zT

zTbTK
ebT

TzI
bz

+

++
⋅⋅+⋅

π
=′

−

ν

νν
νν

ν  

Comparing with (4.21) shows that ( )
( )

( )zfzI T
T bbNIG νν −+

=′
,21  and 

(4.22) for 0≥a  is shown. The formula for 0<a  is obtained from the 
relationship ( ) ( ).,,1,, γ−Ψ−=γΨ baba   


